Exercise 2

Consider the equations in Exercise 1 supplemented by the initial data

$$
u(x, 0)=f(x), \quad v(x, 0)=h(x) .
$$

(a) Show that the appropriate initial data for the wave equation for u is

$$
u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=-h^{\prime}(x) .
$$

(b) Find the appropriate initial data for the wave equation for v.

Solution

The two given conditions in Exercise 1 are

$$
\frac{\partial u}{\partial t}=-\frac{\partial v}{\partial x} \quad \text { and } \quad \frac{\partial v}{\partial t}=-\frac{\partial u}{\partial x} .
$$

Since u and v satisfy the wave equation, which is second-order in t, two initial conditions are needed for there to be a well-defined solution. The initial value problem for u is as follows.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=f(x) \\
& \begin{aligned}
\frac{\partial u}{\partial t}(x, 0) & =-\frac{\partial v}{\partial x}(x, 0) \\
& =-\frac{d}{d x}[v(x, 0)] \\
& =-\frac{d}{d x}[h(x)] \\
& =-h^{\prime}(x)
\end{aligned}
\end{aligned}
$$

The initial value problem for v is very similar.

$$
\begin{aligned}
& \frac{\partial^{2} v}{\partial t^{2}}=\frac{\partial^{2} v}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& v(x, 0)=h(x) \\
& \begin{aligned}
\frac{\partial v}{\partial t}(x, 0) & =-\frac{\partial u}{\partial x}(x, 0) \\
& =-\frac{d}{d x}[u(x, 0)] \\
& =-\frac{d}{d x}[f(x)] \\
& =-f^{\prime}(x)
\end{aligned}
\end{aligned}
$$

